DigiClips Media Search Engine

sddec21-06

Tyler Johnson, Samuel Massey, Max Van de Wille, Max Wilson

Advisor: Ashfaq Khokar

Our Client

- DigiClips, Inc., a Colorado based media content analysis company
- Contacts:
 - Chairman: Bob Shapiro
 - Senior Software Engineer: Henry Bremers
- Constantly recording television news and radio in the Denver Metropolitan Area
- Provides a search engine so that recent news and radio broadcasts can be searched

Project Plan

- Problem Statement
- Functional Requirements
- Non-Functional Requirements
- Constraints & Consideration
- Market Survey
- Potential Risk & Mitigation
- Resource & Cost Estimates
- Project Milestones & Schedule

Project Plan Problem Statement

- So far, only closed caption data is extracted alongside television recordings
- Closed captions data often misses words or phrases spoken within the broadcast
- Additionally, there is visible text shown on screen that is also not transcribed
- No closed captions or transcribed data is extracted alongside radio recordings
- Missing/untranscribed data leaves gaps in the searchable content of a broadcast

Project Plan Functional Requirements

- Speech-to-text must convert mono and stereo audio recordings into plain text
- Video-to-text must detect multiple fonts/styles of text on bottom half of the recording frames
- All system results must match DigiClips database schemas
- All system results must have proper grammar and spelling
- All system errors must be recorded in the DigiClips error database

Project Plan Non-Functional Requirements

- System will be built without using any costly API/cloud resources
- System will be built with documentation to explain usage
- System should scale with increased quantity of data
- System should reliably output accurate data in a reasonable amount of time

Project Plan Constraints & Considerations

Constraints:

- Cannot utilize certain paid APIs for speech-to-text or optical character recognition
- Developed program must be able to run on a relatively underpowered computer
- Must run quickly to query data within 24 hours of recording

Considerations:

- The output text must be indexed by timestamp so that it can be linked to a video segment
- Assuming video input will be high enough quality for accurate processing

Project Plan Market Survey

- Very few existing implementations of speech-to-text and video-to-text on television
- Most similar applications differ in key areas
 - Performing processing on a live feed
 - Grammar and spelling is not a concern for output
 - Output is not formatted to be searchable
 - Usages are not time-sensitive

Project Plan Potential Risks & Mitigation

Risk	Probability	Mitigation
Speech-to-text processing inaccuracies	0.2	Extensively research speech recognition technology
Video-to-text service processing	0.5	Researching video OCR strategies and code optimization
Word misidentification	0.5	Testing throughout development
System Integration	0.5	Substantial planning ahead of time
Database connection	0.4	Communication with DigiClips

sddec21-06

Project Plan Resource & Cost Estimates

Resources:

• No additional resources required to complete project

Cost:

• This project will not incur any costs

Project Plan Project Milestones & Schedule

Milestones:

- Complete speech-to-text system
- Complete video-to-text system
- Integrate the two systems into one
- Integrate with DigiClips database

Schedule:

- April 2021 October 2021
- April 2021 October 2021
- October 2021 November 2021
- November 2021 December 2021

Project Plan Evaluation Criteria

- Achieve 80% accuracy on speech recognition and 95% coverage with microservice unit testing.
- Achieve 70% accuracy on video text recognition and 95% coverage with microservice unit testing.
- Process speech-to-text for a video file within 75% of the file's length.
- Process video-to-text for a video file within the length of the file.

System Design

- Functional Decomposition
- Detailed Design
- Hardware & Software Platforms
- Test Plan
- Prototype Implementations

System Design Functional Decomposition

- Detect speech in audio file and output transcript
 - Split input into chunks for individual processing
 - Process output for grammar and punctuation
 - Index output with timestamps
- Detect words and phrases shown on screen and output
 - Splitting video file into individual frames
 - Image pre-processing
 - Index text output with timestamps

System Design Detailed Design - Overall

- Microservices
 - Driver Microservice
 - Speech-to-text Microservice
 - Video-to-text Microservice

System Design Detailed Design - Speech-to-text

- Load file into application
- Split into chunks on silence
- Run chunks through DeepSpeech model
- Add grammar and punctuation
- Combine chunks
- Output

System Design Detailed Design - Video-to-text

- Perform pre-processing and text detection for every n frames
 - n is dependent on frames per second (fps) of input video
- Pre-processing includes cropping, thresholding, Gaussian noise reduction
- Timestamp of frame (in seconds) can be found by calculating frame number / fps

System Design Hardware & Software Platforms

Programming Language:

• Python

Frameworks and Libraries:

- Flask
- Tesseract
- OpenCV
- DeepSpeech

- pydub
- punctuator2
- Language-tool-python

System Design Test Plan

- Unit Testing
 - pytest and unittest
 - Test smaller individual functions
 - Regression testing
- Interface Testing
 - Endpoint-based testing
 - HTTP requests
- Acceptance Testing
 - Working with client to ensure functionality
- Results
 - Use testing to validate features during development cycle

GET	✓ localhost:5000/?fn	ame=audio/test4.wav
Param	ns • Authorization Headers	(10) Body Pre-request Script
Quer	y Params	
	KEY	VALUE
	fname	audio/test4.wav
	Кеу	Value
Body	Cookies Headers (4) Test Re	sults
Pret	tty Raw Preview Vis	ualize HTML V

System Design **Prototype Implementations - Speech-to-text**

- Implemented simple flask web service
- API accepts a file path
- Outputs speech-to-text result

		Headers (6) Body	y Pre-req. Tests Settings		Cookies
Quer	ry Params KEY		VALUE	DESCRIPTION	••• Bulk Edit
~	fname		audio/test1.wav		
	Key		Value	Description	
Body	×				Save Response 🗸
Body Pret		Preview Vi			Save Response 🗸

Example of using Postman to make requests to Flask service

System Design **Prototype Implementations – Video-to-text**

- Implemented simple data pipeline for prototyping
- Program accepts a file path to video
- Outputs string captured by processed frame with timestamp index

Example output showing locations of identified text

0h:0m:13.65s — <& Couns Dr JENNIFER ASHTON ABC NEWS Chief Medical Correspondent 0h:0m:13.68s — <& Couns Dr JENNIFER ASHTON ABC NEWS Chief Medical Correspondent 0h:0m:13.71s — <& Couns Dr JENNIFER ASHTON ABC NEWS Chief Medical Correspondent 0h:0m:13.75s WHAT YOU SNEWS Couns Dr JENNIFER ASHTON ABC NEWS Chief Medical Correspondent 0h:0m:13.78s SN ye) Dr JENNIFER ASHTON ABC NEWS Chief Medical Correspondent

String output for previous figure with formatted timestamp

Conclusion

- Current Project Status
- Task Responsibilities & Contributions
- Next Semester Plan

Conclusion Current Project Status

- Speech-to-text
 - Prototype functional
 - Basic Flask app
 - Processes audio file and returns text with grammar checking and punctuation
- Video-to-text
 - Early prototype
 - Tesseract running on video frames
 - Needs fine tuning for pre-processing, Tesseract parameters

Conclusion Task Responsibilities & Contributions

- Tyler Johnson
 - Responsible for planning and implementing testing on project
- Samuel Massey
 - Responsible for assignment planning and research/work on speech-to-text
- Max Van de Wille
 - Responsible for documenting architecture changes and working on video-to-text
- Maxwell Wilson
 - Responsible as primary point of contact with client and working on speech-to-text

Conclusion Next Semester Plan

- Complete speech-to-text microservice
- Complete video-to-text microservice
- Implement created elements into one product
 - Completing driver microservice
- Combine created project with DigiClips system
- Ongoing testing finalized via acceptance testing with client

sddec21-06

Appendix

• Gantt-Style Schedule

sddec21-06